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Abstract
In this paper, we have improved the tanh-method by means of a proper
transformation and a general ansatz. Applying the improved method and direct
assumption method with symbolic computation, we consider two kinds of
equations, general two-dimensional KdV-type equations with nonlinear terms
of any order,

(
ut + aupux + bu2pux + δuxxx

)
x

+ suyy = 0, and general two-
dimensional KdV–Burgers-type equations with nonlinear terms of any order,(
ut + aupux + bu2pux + γ uxx + δuxxx

)
x

+ suyy = 0. As a result, rich explicit
exact solutions for these two equations, which contain kink-profile solitary-
wave solutions, bell-profile solitary-wave solutions, rational solutions, periodic
solutions and combined formal solutions, are obtained.

PACS numbers: 02.30.Jr, 03.65.Fd

1. Introduction

The KdV-type equations and KdV–Burgers-type equations arise in a variety of physical
contexts and have been studied by many authors [1–5, 13–21]. The KdV-type equations have
applications in quantum field theory, plasma physics and solid-state physics. For example,
the kink soliton can be used to calculate energy and momentum flow and topological charge
in quantum fields. Recently, equations of these two types have received much attention. It is
well known that the KdV–Burgers equation takes the form

ut + uux − αuxx + βuxxx = 0 (1.1)

and its two-dimensional generalization is

(ut + uux − αuxx + βuxxx)x + γ uyy = 0 (1.2)
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where α, β and γ are constants. Due to the nonintegrability of equations (1.1) and (1.2),
recently much attention has been given to the study of their exact solutions by direct methods
such as the tanh-method and homogeneous balance method [1–3, 5, 7]. In [1–3], the soliton
solution of equation (1.2) is

u = 3α2

25β
(sech2 ξ ± 2tanh ξ ± 2) ξ = ∓ α

10β
x +

1

2
ly +

(
3α3

125β2
∓ 5l2βγ

2α

)
t (1.3)

where l is an arbitrary constant. Besides above solution, Fan et al [5] found another type of
soliton solution for equation (1.2)

u = −(d + c2γ ) ± 6α2

25β
tanh ξ +

6α2

25β
sech2 ξ + i

6α2

25β
(1 ∓ tanh ξ) sech ξ (1.4)

where ξ = ∓ α
5β

(x + cy + dt). More recently, Zhang et al [4] considered explicit exact solitary-
wave solutions for the compound KdV-type equation with nonlinear terms of any order

ut + aupux + bu2pux + δuxxx = 0 a, b, δ, p = const p > 0 (1.5)

and the compound KdV–Burgers-type equation with nonlinear terms of any order

ut + aupux + bu2pux + γ uxx + δuxxx = 0 a, b, γ, δ, p = const γ �= 0 p > 0. (1.6)

For equation (1.5), they obtained the following bell-profile solitary-wave solutions:

u1,2(ξ) =


±v(1 + p)(2 + p)

√
1+2p

a2(1+2p)+bv(1+p)(2+p)2 sech2 p

2

√
v
δ
(x − vt + ξ0)

2 +
(
−1 ± a

√
1+2p

a2(1+2p)+bv(1+p)(2+p)2

)
sech2 p

2

√
v
δ
(x − vt + ξ0)




1
p

. (1.7)

For equation (1.6), they obtained the following kink-profile solitary-wave solutions:

u1,2(x, t) =

A

2


1 ± tanh

1

2

√
− bp2

δ(1 + p)(1 + 2p)

×A

(
x −

(
b

1 + 2p
A2 +

a

1 + p
A

)
t + ξ0

)



1
p

(1.8)

where A = − (1+p)(1+2p)

pb(2+p)

[
pa

1+p
± γ

√
− p2b

δ(1+p)(1+2p)

]
. In (1.8), when setting γ = 0, the kink-

profile solitary-wave solutions for equation (1.5) were obtained.
In this paper, firstly we present two equations, a general two-dimensional KdV-type

equation with nonlinear terms of any order (G2DKdV for short)(
ut + aupux + bu2pux + δuxxx

)
x

+ suyy = 0 a, b, δ, s, p = const (I)

and a general two-dimensional KdV–Burgers-type equation with nonlinear terms of any order
(G2DKdV–Burgers for short)(
ut + aupux + bu2pux + γ uxx + δuxxx

)
x

+ suyy = 0 a, b, γ, δ, p = const. (II)

Besides equations (1.1), (1.2), (1.5) and (1.6), the above two equations also include many KdV-
type and KdV–Burgers-type equations in (1 + 1)-dimensional and (2 + 1)-dimensional cases
(see [13–21] for details). Secondly, we would seek explicit exact solutions for G2DKdV and
G2DKdV–Burgers equations. Making use of the improved method described in section 2
and the direct assumption method in section 4, many explicit exact solutions, which contain
bell-profile solitary-wave solutions, kink-profile solitary-wave solutions, periodic solutions,
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combined formal solitary-wave solutions and rational solutions, are obtained. The solutions
obtained in [1–5] are included in our obtained solutions.

This paper is organized as follows. In section 2, we describe the improved method. In
section 3, we apply the improved method to G2DKdV and G2DKdV–Burgers equations and
bring out many solutions. In section 4, the bell-profile solitary-wave solutions of G2DKdV
equation are found. Conclusions will be presented in section 5.

2. Summary of the improved method

In this section, we will improve the tanh-method developed by other authors [5–11]. For given
nonlinear evolution equations, say, in two variables, x, t

F (u, ut , ux, uxt , utt , . . .) = 0 (2.1)

we seek the following formal travelling wave solutions:

u(x, t) = u(ξ) ξ = x − λt (2.2)

where λ is a constant to be determined later. Then equation (2.1) reduces to a nonlinear
ordinary differential equation

G(u, u′, u′′, u′′′, . . .) = 0 (2.3)

where a prime denotes d
dξ

. In order to seek the travelling wave solutions of equation (2.3), we
take the following improved transformations (see [5, 9] for details):

u(ξ) =
m∑

i=1

ωi−1(ξ)
[
Aiω(ξ) + Bi

√
R + ω2(ξ)

]
+ A0 (2.4)

and the new variable ω = ω(ξ) satisfies

ω′ − (R + ω2) = dω

dξ
− (R + ω2) = 0 (2.5)

where A0, Ai, Bi (i = 1, 2, . . . ,m) and R are constants to be determined later, and m is a
positive integer. However, when we balance the highest order partial derivative term and the
nonlinear term in equation (2.1) or (2.3), we find that the constant m need not be a positive
integer. In order to apply the method described in [5–11] when m is equal to a fraction or a
negative integer, we make the following transformation:

(1) When m = q

p
(where m = q

p
is a fraction in lowest terms), we let

u(ξ) = ϕq/p(ξ) (2.6)

then substitute (2.6) into equation (2.3) and return to determine the value of m by balancing
the highest order partial derivative term and the nonlinear term in the new equation (2.3).

(2) When m is a negative integer, we let

u(ξ) = ϕm(ξ) (2.7)

then substitute (2.7) into equation (2.3) and return to determine the value of m again.

In general, the constant m can be changed into a positive integer by means of the above
proper transformation. Otherwise we have to seek other proper transformations.

We summarize the extended method as follows:

Step 1. Determine the values of m in (2.4) by balancing the highest order partial derivative
term and the nonlinear term in (2.1) (or (2.3)).
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(i) If m is a positive integer then step 2.
(ii) If m = q

p
, we make the transformation (2.6) and then return to step 1.

(iii) If m is a negative integer, we make the transformation (2.7) and then return to step 1.

Step 2. With the aid of Mathematica, substituting (2.4) along with the condition (2.5) into
equation (2.3) yields a system of algebraic equations with respect to ωi(R + ω2)j/2 (j =
0, 1; i = 0, 1, 2, . . .).
Step 3. Collect all terms with the same power in ωi(R + ω2)j/2 (j = 0, 1; i = 0, 1, 2, . . .). Set
the coefficients of the terms ωi(R + ω2)j/2 (j = 0, 1; i = 0, 1, 2, . . .) to zero to get an over-
determined system of nonlinear algebraic equations with respect to the unknown variables
λ,R,A0, Ai, Bi (i = 1, 2, . . . ,m).
Step 4. With the aid of Mathematica, we apply the Wu-elimination method [12] to solve
the above over-determined system of nonlinear algebraic equations obtained in step 3, which
yields the values of λ,R,A0, Ai, Bi (i = 1, 2, . . . ,m).
Step 5. It is well known that the general solutions of equation (2.5) are

(1) when R < 0,

ω(ξ) = −√−R tanh(
√−R ξ) ω(ξ) = −√−R coth(

√−R ξ) (2.8)

(2) when R = 0,

ω(ξ) = −1

ξ
(2.9)

(3) when R > 0,

ω(ξ) =
√

R tan(
√

R ξ) ω(ξ) = −
√

R cot(
√

R ξ). (2.10)

Thus according to equations (2.2), (2.4), (2.6) or (2.7)–(2.10) and the conclusions in step 4,
we can obtain many travelling wave solutions of equation (2.1).

3. Explicit exact solutions for the general two-dimensional KdV-type and the general
two-dimensional KdV–Burgers-type equations with nonlinear term of any order

Let us consider the G2DKdV–Burgers equation, i.e. equation (II). Firstly we take the form of
the required solution as follows:

u(x, y, t) = v(ξ) ξ = kx + ny − λt (3.1)

where k, n and λ are constants to be determined, and thus equation (II) becomes(−λkvξ + ak2vpvξ + bk2v2pvξ + γ k3vξξ + δk4vξξξ

)
ξ

+ sn2vξξ = 0. (3.2)

Integrating the above equation twice with regard to ξ , we obtain

δk4v′′(ξ) + γ k3v′(ξ) + (sn2 − λk)v(ξ) +
ak2

p + 1
vp+1(ξ) +

bk2

2p + 1
v2p+1(ξ) = 0 (3.3)

with the integration constants taken to be zero. According to step 1 in section 2, if δ �= 0, b �= 0
and p �= 0, 1

2 , by balancing v′′(ξ) and v2p+1)(ξ) in equation (3.3), we get the value of
m,m = 1/p. Therefore we make the following transformation:

v(ξ) = ϕ
1
p (ξ) (3.4)

then substituting (3.4) into equation (3.3) reads

δk4[pϕ(ξ)ϕ′′(ξ) + (1 − p)ϕ′2(ξ)] + γ k3pϕ(ξ)ϕ′(ξ) + p2

[
(sn2 − λk)ϕ2(ξ)

+
ak2

p + 1
ϕ3(ξ) +

bk2

2p + 1
ϕ4(ξ)

]
= 0. (3.5)
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For ease of computing, we reduce (3.5) and get the following equation:

(1 + p)(1 + 2p)δk4[pϕ(ξ)ϕ′′(ξ) + (1 − p)ϕ′2(ξ)] + (1 + p)(1 + 2p)γ k3pϕ(ξ)ϕ′(ξ)

+ p2[(1 + p)(1 + 2p)(sn2 − λk)ϕ2(ξ)

+ (1 + 2p)ak2ϕ3(ξ) + (1 + p)bk2ϕ4(ξ)] = 0. (3.6)

According to step 1 in section 2, by balancing ϕ(ξ)ϕ′′(ξ) (or ϕ′2(ξ)) and ϕ4(ξ) in equation (3.6),
we get the value of m,m = 1. Therefore we suppose that (3.6) has the following formal
solutions:

ϕ(ξ) = A0 + A1ω + B1

√
R + ω2 (3.7)

and ω = ω(ξ) satisfies (2.5), where A0, A1, B1 are constants to be determined later.
With the aid of Mathematica, substituting (3.7) into (3.6) along with (2.5) and collecting

all terms with the same power in ωi(R + ω2)j/2 (j = 0, 1; i = 0, 1, 2, 3, 4), yields a system
of equations w.r.t. ωi(R + ω2)j/2. Setting the coefficients of ωi(R + ω2)j/2 (j = 0, 1; i =
0, 1, 2, 3, 4) in the obtained system of equations to zero, we can deduce the following set
of over-determined algebraic polynomials with respect to the unknowns A0, A1, B1, R, k, n

and λ:

A0
2p2

(
A0k

2(a + 2ap + A0b(1 + p)
)

+ (1 + p)(1 + 2p)(n2s − kλ))

+ pR
(
B1

2p
(
3A0k

2(a + 2ap + 2A0b(1 + p))

+ (1 + p)(1 + 2p)(n2s − kλ)
)

+ A0A1k
3(1 + p)(1 + 2p)γ

)
+ k2(1 + p)R2

(
bB1

4p2 + k2(1 + 2p)
(−A1

2(−1 + p) + B1
2p
)
δ
) = 0 (3.8)

B1p
(
A0p

(
A0k

2(4A0b(1 + p) + a(3 + 6p)) + 2(1 + p)(1 + 2p)(n2s − kλ)
)

+ k2R
(
B1

2p(a + 2ap + 4A0b(1 + p))

+ A1k(1 + p)(1 + 2p)γ + A0k
2(1 + p)(1 + 2p)δ

)) = 0 (3.9)

p(A0A1p(A0k
2(4A0b(1 + p) + a(3 + 6p)) + 2(1 + p)(1 + 2p)(n2s − kλ))

+ k2R
(
3aA1B1

2p(1 + 2p) +
((

A1
2 + B1

2
)
k(1 + 2p)γ

+ 2A0A1
(
6bB1

2p + k2(1 + 2p)δ
)))) = 0 (3.10)

A0B1k
3p(1 + p)(1 + 2p)γ + A1B1(2k4(1 + p)(1 + 2p)Rδ

+ p
(
2p
(
3A0k

2(a + 2ap + 2A0b(1 + p)) + 2bB1
2k2(1 + p)R

+ (1 + p)(1 + 2p)(n2s − kλ)
)

+ k4(1 + p)(1 + 2p)Rδ)
) = 0 (3.11)(

A1
2 + B1

2
)
p2
(
3A0k

2(a + 2ap + 2A0b(1 + p)
)

+ (1 + p)(1 + 2p)(n2s − kλ))

+ A0A1k
3p(1 + p)(1 + 2p)γ + k2(1 + p)R

(
2bB1

2
(
3A1

2 + B1
2
)
p2

+ k2(1 + 2p)
(
2A1

2 + B1
2(1 + 2p)

)
δ
) = 0 (3.12)

B1k
2p
((

3A1
2 + B1

2
)
p(a + 2ap + 4A0b(1 + p)) + 2k(1 + p)(1 + 2p)(A1γ + A0kδ)

) = 0

(3.13)

k2p
(
A1
(
A1

2 + 3B1
2)p(a + 2ap + 4A0b(1 + p)) + A1

2k(1 + p)(1 + 2p)γ

+ B1
2k(1 + p)(1 + 2p)γ + 2A0A1k

2(1 + p)(1 + 2p)δ
) = 0 (3.14)

2A1B1k
2(1 + p)

(
2A1

2bp2 + 2bB1
2p2 + k2(1 + 3p + 2p2)δ

) = 0 (3.15)

k2(1 + p)
(
b
(
A1

4 + 6A1
2B1

2 + B1
4)p2 +

(
A1

2 + B1
2)k2(1 + p)(1 + 2p)δ

) = 0. (3.16)
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To solve equations (3.8)–(3.16) by using Wu-elimination method [12], which is a sufficient
method to solve the systems of algebraic polynomial equations with more unknowns and
with the aid of Mathematica, we get the following conclusions from the system of equations
(3.8)–(3.16).

Case 1.

B1 = 0 A0 = −a(1 + 2p)

2b(2 + p)
± γ

√−(1 + p)(1 + 2p)bδ

2b(2 + p)δ

A1 = ±
√

−k2(1 + p)(1 + 2p)δ

bp2
R = A2

0bp
2

k2(1 + p)(1 + 2p)δ

λ = 4bk

1 + 2p
A2

0 +
2ak

1 + p
A0 +

sn2

k
. (3.17)

Case 2.

A0 = R = 0 λ = sn2

k
A1 = B1 = ±

√
−k2(1 + p)(1 + 2p)δ

4bp2

γ 2 = −a2δ(1 + 2p)

b(1 + p)
. (3.18)

Case 3.

A0 = −a(1 + 2p)

2b(2 + p)
± γ

√−(1 + p)(1 + 2p)bδ

2b(2 + p)δ
A1 = ±B1 = ±

√
−k2(1 + p)(1 + 2p)δ

4bp2

R = 4A2
0bp

2

k2(1 + p)(1 + 2p)δ
λ = 4bk

1 + 2p
A2

0 +
2ak

1 + p
A0 +

sn2

k
. (3.19)

Case 4.

γ = A0 = B1 = a = 0 p = 1 A1 = ±
√

3(sn2 − λk)

bk2R
R = λk − sn2

2δk4
.

(3.20)

Case 5.

γ = A0 = A1 = a = 0 B1 = ±
√

− (1 + p)(1 + 2p)(sn2 − λk)

bk2R

R = (sn2 − λk)p2

δk4
. (3.21)

Case 6.

γ = A0 = a = 0 p = 1 A1 = ±B1 = ±
√

3(sn2 − λk)

bk2R
R = −2(sn2 − λk)

δk4
.

(3.22)

Case 7.

γ = A1 = 0 p = 1 A0 = ±
√

a2

4b
B1 = ±

√
a2

2bR
R = − a2

12δk2

λ = −a2k

6
+

sn2

k
. (3.23)

Therefore, according to step 5 in section 2, some exact travelling wave solutions, which
contain solitary-wave solutions, periodic wave solutions, rational solutions and combined
formal solitary-wave solutions, are found for equations (I) and (II). Next, we describe the
solutions for equations (II) and (I), respectively.
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3.1. Explicit exact solutions for the general two-dimensional KdV–Burgers-type equation
with nonlinear terms of any order

In this section, we consider the solutions for equation (II). From equations (2.8)–(2.10), (3.1),
(3.4), (3.7) and (3.17)–(3.19), we obtain the explicit exact solutions for equation (II) as follows:

Case 1. From (3.17), equation (II) has the following solutions:

(1) when R < 0, i.e. (1 + p)(1 + 2p)bδ < 0,

u11 =

A0


1 ± tanh


±

√
− A2

0bp
2

k2(1 + p)(1 + 2p)δ
(kx + ny − λt + ξ0)








1/p

(3.24)

u12 =

A0


1 ± coth


±

√
− A2

0bp
2

k2(1 + p)(1 + 2p)δ
(kx + ny − λt + ξ0)








1/p

(3.25)

(2) when R > 0, i.e. (1 + p)(1 + 2p)bδ > 0,

u13 =

A0


1 ± i tan


±

√
A2

0bp
2

k2(1 + p)(1 + 2p)δ
(kx + ny − λt + ξ0)








1/p

(3.26)

u14 =

A0


1 ± i cot


±

√
A2

0bp
2

k2(1 + p)(1 + 2p)δ
(kx + ny − λt + ξ0)








1/p

(3.27)

where A0 = − a(1+2p)

2b(2+p)
± γ

√−(1+p)(1+2p)bδ

2b(2+p)δ
, λ = 4bk

1+2p
A2

0 + 2ak
1+p

A0 + sn2

k
, ξ0 is an arbitrary

constant (Note: in the rest of this paper ξ0 denotes an arbitrary constant).

Case 2. From (3.18), equation (II) has the following rational solutions:

u3 =

±

√
−k2(1 + P)(1 + 2p)δ

bp2

1

kx + ny − sn2

k
t + ξ0




1
p

(3.28)

where γ satisfies γ 2 = − a2δ(1+2p)

b(1+p)
.

Case 3. From (3.19), equation (II) has the following solutions:

u41 = {A0[1 ± tanh [
√−R(kx + ny − λt)] ± i sech [

√−R(kx + ny − λt + ξ0)]]}
1
p (3.29)

u42 = {A0[1 ± coth[
√−R(kx + ny − λt)] ± cosech [

√−R(kx + ny − λt + ξ0)]]}
1
p (3.30)

u43 = {A0[1 ± i tan[
√

R(kx + ny − λt)] ± i sec [
√

R(kx + ny − λt + ξ0)]]}
1
p (3.31)

u44 = {A0[1 ± i cot [
√

R(kx + ny − λt)] ± i cosec [
√

R(kx + ny − λt + ξ0)]]}
1
p (3.32)

where A0 = − a(1+2p)

2b(2+p)
± γ

√−(1+p)(1+2p)bδ

2b(2+p)δ
, R = 4A2

0bp
2

k2(1+p)(1+2p)δ
, λ = 4bk

1+2p
A2

0 + 2ak
1+p

A0 + sn2

k
.

Remark 1. Our obtained solutions include the solutions obtained in [1–5]. By simple
calculation, it is not difficult to verify that

(1) when setting a = 0, b = 1, p = 1
2 , γ = −α, δ = β, s = γ and n = 5βlk

α
, the solutions

(3.24) are just the solution (1.3).
(2) when setting n = 0 and s = 0, the solutions (3.24) are just the solutions (1.8).
(3) when setting a = 0, b = 1, p = 1

2 , γ = −α, δ = β, s = γ, n = ck and λ = −dk, the
solutions (3.29) are just the solution (1.4) for equation (1.2).



8260 B Li et al

3.2. Explicit exact solutions for the general two-dimensional KdV-type equation with
nonlinear terms of any order

In this section, we consider the general two-dimensional KdV-type equation with nonlinear
terms of any order, i.e. equation (I). From equations (2.8)–(2.10), (3.1), (3.4), (3.7) and
(3.17)–(3.23), we obtain the explicit exact solutions for equation (I) as follows:

Case 1. From (3.17), we can obtain the following solutions for equation (I):

(1) when R < 0, i.e. (1 + p)(1 + 2p) bδ < 0

u11 =

−a(1 + 2p)

2b(2 + p)


1 ± tanh



√

− a2p2(1 + 2p)

4bk2(1 + p)(2 + p)2δ
(kx + ny − λt + ξ0)








1/p

(3.33)

u12 =

−a(1 + 2p)

2b(2 + p)


1 ± coth



√

− a2p2(1 + 2p)

4bk2(1 + p)(2 + p)2δ
(kx + ny − λt + ξ0)








1/p

(3.34)

(2) when R > 0, i.e. (1 + p)(1 + 2p)bδ > 0,

u13 =

−a(1 + 2p)

2b(2 + p)


1 ± i tan



√

a2p2(1 + 2p)

4bk2(1 + p)(2 + p)2δ
(kx + ny − λt + ξ0)








1/p

(3.35)

u14 =

−a(1 + 2p)

2b(2 + p)


1 ± i cot



√

a2p2(1 + 2p)

4bk2(1 + p)(2 + p)2δ
(kx + ny − λt + ξ0)








1/p

(3.36)

where λ = − a2k(1+2p)

b(1+p)(2+p)2 + sn2

k
.

Case 2. Note that γ = 0 if and only if a = 0 in (3.18). Therefore the equation(
ut + bu2pux + δxxx

)
x

+ suyy = 0 has the following rational solutions:

u2 =

±

√
−k2(1 + p)(1 + 2p)δ

bp2

1(
kx + ny − sn2

k
t + ξ0

)



1
p

. (3.37)

Case 3. From (3.19), the equation
(
ut +aupux +bu2pux +δuxxx

)
x

+suyy = 0 has the following
formal solutions:

(1) when R < 0, i.e. δ(sn2 − λk) < 0,

u31 = {A0[1 ± tanh [
√−R(kx + ny − λt + ξ0)] ± i sech [

√−R(kx + ny − λt + ξ0)]]}
1
p

(3.38)

u32 = {A0[1 ± coth[
√−R(kx + ny − λt + ξ0)] ± cosech[

√−R(kx + ny − λt + ξ0)]]}
1
p

(3.39)
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(2) when R > 0, i.e. δ(sn2 − λk) > 0,

u33 = {A0[1 ± i tan[
√

R(kx + ny − λt + ξ0)] ± i sec[
√

R(kx + ny − λt + ξ0)]]}
1
p (3.40)

u34 = {A0[1 ± i cot[
√

R(kx + ny − λt + ξ0)] ± i cosec[
√

R(kx + ny − λt + ξ0)]]}
1
p

(3.41)

where A0 = − a(1+2p)

2b(2+p)
, R = a2p2(1+2p)

bk2(1+p)(2+p)2δ
, λ = − a2k(1+2p)

b(1+p)(2+p)2 + sn2

k
.

Case 4. From (3.20), the equation
(
ut +bu2ux +δuxxx

)
x

+suyy = 0 has the following solutions:

(1) when R < 0, i.e. δ(sn2 − λk) > 0,

u41 = ±
√

−3(sn2 − λk)

bk2
tanh

[√
sn2 − λk

2δk4
(kx + ny − λt + ξ0)

]
(3.42)

u42 = ±
√

−3(sn2 − λk)

bk2
coth

[√
sn2 − λk

2δk4
(kx + ny − λt + ξ0)

]
(3.43)

(2) when R > 0, i.e. δ(sn2 − λk) < 0,

u43 = ±
√

3(sn2 − λk)

bk2
tan

[√
− sn2 − λk

2δk4
(kx + ny − λt + ξ0)

]
(3.44)

u44 = ±
√

3(sn2 − λk)

bk2
cot

[√
− sn2 − λk

2δk4
(kx + ny − λt + ξ0)

]
. (3.45)

Case 5. From (3.21), the solutions of the equation,
(
ut + bu2pux + δuxxx

)
x

+ suyy = 0, are as
follows:

(1) when R < 0, i.e. δ(sn2 − λk) < 0,

u51 =
{

±
√

− (1 + p)(1 + 2p)(sn2 − λk)

bk2

× sech

[√
− (sn2 − λk)p2

δk4
(kx + ny − λt + ξ0)

]} 1
p

(3.46)

u52 =
{

±
√

(1 + p)(1 + 2p)(sn2 − λk)

bk2

× cosech

[√
− (sn2 − λk)p2

δk4
(kx + ny − λt + ξ0)

]} 1
p

(3.47)

(2) when R > 0, i.e. δ(sn2 − λk) > 0,

u53 =
{

±
√

− (1 + p)(1 + 2p)(sn2 − λk)

bk2

× sec

[√
(sn2 − λk)p2

δk4
(kx + ny − λt + ξ0)

]} 1
p

(3.48)
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u54 =
{

±
√

− (1 + p)(1 + 2p)(sn2 − λk)

bk2

× cosec

[√
(sn2 − λk)p2

δk4
(kx + ny − λt + ξ0)

]} 1
p

. (3.49)

Case 6. From (3.22), the equation,
(
ut + bu2ux + δuxxx

)
x

+ suyy = 0, has the following formal
solutions:

(1) when R < 0, i.e. δ(sn2 − λk) > 0,

u61 = ±M{tanh [
√−R(kx + ny − λt + ξ0)] ± i sech[

√−R(kx + ny − λt + ξ0)]} (3.50)

u62 = ±M{coth[
√−R(kx + ny − λt + ξ0)] ± cosech[

√−R(kx + ny − λt + ξ0)]} (3.51)

where M = A1
√−R =

√
− 3(sn2−λk)

bk2 , R = − 2(sn2−λk)

δk4 ;

(2) when R > 0, δ(sn2 − λk) < 0,

u63 = ±M{tan[
√

R(kx + ny − λt + ξ0)] ± sec[
√

R(kx + ny − λt + ξ0)]} (3.52)

u64 = ±M{cot[
√

R(kx + ny − λt + ξ0)] ± cosec[
√

R(kx + ny − λt + ξ0)]} (3.53)

M = A1

√
R =

√
3(sn2−λk)

bk2 , R = − 2(sn2−λk)

δk4 .

Case 7. From (3.23), the equation,
(
ut + auux + bu2ux + δxxx

)
x

+ suyy = 0, has the following
formal solutions:

(1) when R < 0, i.e. δ > 0,

u71 = ±
√

a2

4b
±
√

− a2

2b
sech

[√
a2

12δk2
(kx + ny − λt + ξ0)

]
(3.54)

u72 = ±
√

a2

4b
±
√

a2

2b
cosech

[√
a2

12δk2
(kx + ny − λt + ξ0)

]
(3.55)

(2) when R > 0, i.e. δ < 0,

u73 = ±
√

a2

4b
±
√

a2

2b
sec

[√
− a2

12δk2
(kx + ny − λt + ξ0)

]
(3.56)

u74 = ±
√

a2

4b
±
√

a2

2b
cosec

[√
− a2

12δk2
(kx + ny − λt + ξ0)

]
(3.57)

where λ = − a2k
6 + sn2

k
.

Remark 2.

(1) It is easy to see that, when n = s = 0, the solutions (3.33) are the same as the solutions (1.8)
with γ = 0, i.e. the results in [4].

(2) From our results, the solutions of some well-known equations such as the KdV
equation, mKdV equation, combined KdV–mKdV equation, KdV–Burgers equation in
(1 + 1)-dimensional cases and KP equation, mKP equation and various generalized KP
equations in (2 + 1)-dimensional cases [13–20], can be recovered. For example, taking
p = 1, n = s = 0, λ = vk in (3.46), we obtain the solutions

u(x,t) = ±
√

6v

b
sech

[√
v

δ
(x − vt + ξ0)

]
which are the bell-profile solitary-wave solutions of the mKdV equation.
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4. The bell-profile solitary-wave solutions to the general two-dimensional KdV-type
equation with nonlinear terms of any order

In section 3, the bell-profile solitary-wave solutions (3.46) for equation (I) with a = 0 are
obtained. In this section, we consider the bell-profile solitary-wave solutions for equation (I)
under the condition a �= 0. By using the same deduction as for formula (3.6), we know that
equation (I) changes into the following equation:

(1 + p)(1 + 2p)δk4[pϕ(ξ)ϕ′′(ξ) + (1 − p)ϕ′2(ξ)] + p2[(1 + p)(1 + 2p)(sn2 − λk)ϕ2(ξ)

+ (1 + 2p)ak2ϕ3(ξ) + (1 + p)bk2ϕ4(ξ)] = 0. (4.1)

Now, we assume that the solution of equation (4.1) has the following form:

ϕ(ξ) = A eα(ξ+ξ0)

(1 + eα(ξ+ξ0))2 + B eα(ξ+ξ0)
= A sech2(α/2)(ξ + ξ0)

4 + B sech2(α/2)(ξ + ξ0)
(4.2)

where A,B and α are constants to be determined, and ξ0 is an arbitrary phase shift.
With the aid of Mathematica, substituting (4.2) into (4.1), we obtain

A2(1 + p)(1 + 2p)(p2(n2s − kλ) + k4α2δ) = 0 (4.3)

A2p(1 + 2p)(aAk2p + 2(2 + B)p(1 + p)(n2s − kλ) − (2 + B)k4(1 + p)α2δ) = 0 (4.4)

A2(A2bk2p2(1 + p) + aA(2 + B)k2p2(1 + 2p) + (6 + 4B + B2)p2(1 + p)(1 + 2p)(n2s − kλ)

− 2k4(1 + p)(α + 2pα)2δ) = 0 (4.5)

A2p(1 + 2p)(aAk2p + 2(2 + B)p(1 + p)(n2s − kλ) − (2 + B)k4(1 + p)α2δ) = 0 (4.6)

A2(1 + p)(1 + 2p)(p2(n2s − kλ) + k4α2δ) = 0. (4.7)

By solving equations (4.3)–(4.7) with the aid of Mathematica, we get the following two groups
of solutions:

α = ±
√

p2(−sn2 + λk)

δk4
(4.8)

A1.2 = ∓(1 + p)(2 + p)(sn2 − kλ)L (4.9)

B1.2 = −2 ± 2ak2L (4.10)

where L =
√

1+2p√
k2[a2k2(1+2p)−b(1+p)(2+p)2(sn2−λk)]

.

Therefore, there are two solutions of the form (4.2) to equation (4.1):

ϕ1(ξ) =
−(1 + p)(2 + p)(sn2 − kλ)L sech2

[
±
√

p2(−sn2+λk)

4δk4 (ξ + ξ0)

]

2 + (−1 + ak2L) sech2

[
±
√

p2(−sn2+λk)

4δk4 (ξ + ξ0)

] (4.11)

ϕ2(ξ) =
(1 + p)(2 + p)(sn2 − kλ)L sech2

[
±
√

p2(−sn2+λk)

4δk4 (ξ + ξ0)

]

2 + (−1 − ak2L) sech2

[
±
√

p2(−sn2+λk)

4δk4 (ξ + ξ0)

] . (4.12)

From (4.11) and (4.12), equation (I) has two families of solutions as follows:

u1(x, y, t) = v(ξ) = [ϕ1(ξ)]
1
p (4.13)
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where ϕ1(ξ) is given by (4.11).

u2(x, y, t) = v(ξ) = [ϕ2(ξ ]
1
p (4.14)

where ϕ2(ξ) is given by (4.12).

Remark 3. It is easy to see that

(1) when n = y = 0 and s = 0, the solutions (4.13) and (4.14) are just the solutions (1.7)
(2) when a = 0, the solutions (4.13) and (4.14) are just the solutions (3.46).

5. Conclusions

In this paper, firstly we present two new equations, the general KdV-type and general KdV–
Burgers-type equations with nonlinear terms of any order. Secondly, by means of a proper
transformation and a more general ansatz, we improve the tanh-method. Applying the
improved method and direct assumption method, many types of exact solutions for these
two equations, which contain kink-profile solitary-wave solutions, bell-profile solitary-wave,
rational solutions, periodic solutions and combined formal solutions,are obtained. The method
can also be easily extended to treat other partial differential equations (PDEs) and is sufficient
to seek more solitary-wave solutions and other formal solutions of given PDEs. In addition,
this method is also computerizable, which allows us to perform complicated and tedious
symbolic algebraic calculations on a computer.

In a recent paper [21], Gao and Tian presented a generalized hyperbolic-function method
(HFM) with computerized symbolic computation to construct the solitonic solutions to
nonlinear equations of mathematical physics. Using the HFM, one can obtain (a) the non-
travelling solitonic solutions, (b) the multi-hyperbolic function solutions, (c) the coefficient
function solutions for some NPDEs. However, they only considered the case for which the
balancing constant is a positive integer. In [22], Ohta studied stability and instability of
standing waves for the nonlinear Schrödinger equation iut + uxx + f (u) = 0 (t � 0, x ∈ R),
where f (u) = a|u|p−1u + b|u|q−1u with a, b ∈ R and 1 < p < q < +∞. The idea in [22]
is very useful for studying the NPDEs with nonlinear terms of any order. In a forthcoming
paper, we shall combine our method with the HFM in [21] and the idea in [22] to seek further
for the solutions of some NPDEs with nonlinear terms of any order.
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